Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-(3-Bromo-4-methoxyphenyl)imidazo-[1,2-a]pyridine

Gui-Yun Duan, ${ }^{\text {a }}$ Chang-Bing Tu, ${ }^{\text {b }}$ Ya-Wei Sun, ${ }^{\text {a }}$ Da-Tong Zhang ${ }^{\text {a }}$ and Jian-Wu Wang ${ }^{\text {a* }}$

${ }^{\mathrm{a}}$ School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, and ${ }^{\mathbf{b}}$ Shandong Luye Pharmaceutical Co. Ltd, Yantai 264000, People's Republic of China

Correspondence e-mail:
yugp2005@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.051$
$w R$ factor $=0.132$
Data-to-parameter ratio $=13.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

The title compound, $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}$, crystallizes with two independent molecules in the asymmetric unit. The dihedral angles between the planes of the imidazo[1,2-a]pyridine and benzene rings in the two independent molecules are 2.7 (3) and $12.2(2)^{\circ}$. There are $\pi-\pi$ stacking interactions and intramolecular hydrogen-bond interactions in the crystal structure.

Comment

Imidazo[1,2-a]pyridine and its derivatives have clinical applications in the treatment of anxiety disorders; Alpidem (Georges et al., 1993) and Zolpidem (Depoortere et al.,1986) are in this category. The title compound, (I), crystallizes with two independent molecules in the asymmetric unit (Fig. 1). All bond lengths and angles in both molecules are within normal ranges (Table 1) and are comparable to those in published structures (Rydzkowski et al., 1988; Zhang \& Hu, 2005).

(I)

The dihedral angles between the planes of the imidazo[1,2a pyridine and benzene rings in the two independent molecules are 2.7 (3) and 12.2 (2) ${ }^{\circ}$. The crystal structure contains

Figure 1
The asymmetric unit of (I), with displacement ellipsoids drawn at the 40% probability level.

Received 10 January 2006
Accepted 16 February 2006
$\pi-\pi$ stacking interactions and intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bond interactions (Table 2). The pyridine ring (C1$\mathrm{C} 5 / \mathrm{N} 1)$ stacks with a benzene ring ($\mathrm{C} 8-\mathrm{C} 13$) related by the symmetry operation $(2-x,-y,-z)$, such that the distance between the ring centroids is 3.681 (5) \AA.

Experimental

The title compound was synthesized from 2-bromo-1-(3-bromo-4methoxyphenyl)ethanone (0.01 mol) and 2-aminopyridine (0.01 mol) in dimethylformamide $(20 \mathrm{ml})$ at $393-403 \mathrm{~K}$ for 24 h in a yield of 56% $(1.69 \mathrm{~g})$. Crystals of (I) suitable for X-ray diffraction analysis were obtained by slow evaporation of a methanol solution at room temperature over a period of two weeks.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}$
$M_{r}=303.16$
Triclinic, $P \overline{1}$
$a=9.766$ (3) \AA
$b=10.355$ (3) \AA
$c=13.017$ (4) \AA
$\alpha=81.669(4)^{\circ}$
$\beta=74.176(4)^{\circ}$
$\gamma=81.141$ (4) ${ }^{\circ}$
$V=1244.0(7) \AA^{3}$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.619 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1528 \\
& \quad \text { reflections } \\
& \theta=2.4-22.4^{\circ} \\
& \mu=3.29 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Block, colorless } \\
& 0.45 \times 0.34 \times 0.21 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.293, T_{\text {max }}=0.501$
6527 measured reflections
4317 independent reflections 3163 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-11 \rightarrow 11$
$k=-9 \rightarrow 12$
$l=-15 \rightarrow 15$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.132$
$S=0.99$
4317 reflections
325 parameters

Figure 2
A packing diagram, viewed down the a axis.

Table 2
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 13-\mathrm{H} 13 A \cdots \mathrm{~N} 2$	0.93	2.56	$2.889(6)$	101
$\mathrm{C} 22-\mathrm{H} 22 A \cdots \mathrm{~N} 4$	0.93	2.57	$2.891(5)$	101

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93-$ $0.96 \AA$, and included in the final cycles of refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for the aryl H atoms and $1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl H atoms. The minimum electron-density peak was located 0.92 Å from atom Br2.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Depoortere, H., Zivkovic, B., Lloyd, K. G., Sanger, D. J., Perrault, G., Langer, S. Z. \& Bartholini, G. (1986). J. Pharmacol. Exper. Ther. 237, 649-658.

Georges, G., Evrard, G., Durant, F., George, F. \& Wick, A. (1993). Eur. J. Med. Chem. 28, 323-335.
Rydzkowski, R., Blondeau, D., Cazé, C. \& Barbier, P. (1988). Acta Cryst. C44, 1215-1218.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXLS97 and SHELXL97. University of Göttingen, Germany.
Zhang, R. \& Hu, Y. (2005). Acta Cryst. E61, o4037-o4038.

